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Abstract—A computationally-efficient method is proposed for
the steady-state performance simulation of brushless permanent
magnet (BLPM) motors. Only a minimum number of magneto-
static FEA solutions are used in conjunction with space-time
transformations, which are based on the periodicity specific
to synchronous machines. For an example interior permanent
magnet (IPM) motor with six teeth per pole, a single magneto-
static FE solution was employed to estimate the flux density time
waveforms in the stator teeth and yoke. Other results include
core losses, back emf and torque. The extension of the method
to fractional slot topologies with reduced number of teeth is
discussed with reference to a 9-slot 6-pole IPM motor example.
The results compare satisfactorily with those obtained from
substantially more laborious time-stepping FEA.

Index Terms –Brushless (BL) permanent-magnet (PM) mo-
tor, AC synchronous machine, IPM motor drive, finite-element
analysis (FEA), flux density waveform, back emf, core loss.

I. I NTRODUCTION

Finite Element Analysis (FEA) of the electromagnetic field
is well established as a mathematical tool for improving
the accuracy of electric machine simulations. Despite the
well recognized advantages of considering exact geometry
details and the non-linearity of steel, the penetration of FEA
is still relatively low in the early stages of the industrial
design process and in the optimization studies that involve
the analysis of hundreds or thousands of candidate designs.
For these tasks, more popular are methods based on rather
simplified geometries and improvements of the traditional
analytical formulations, such as those described by Hendershot
and Miller [1].

Until relatively recently, both the pre-processing, which
involves object description inclusive of the geometry and
meshing, as well as the processing, i.e. solving the large
systems of equations, were limiting factors to wider FEA
acceptance and implementation. Over the years, the challenge
of finding the right balance between computational speed
and precision was addressed, for example, by methods based
on non-linear equivalent magnetic circuits, such as the one
proposed by Lovelaceet al. [2].

However, based on recent developments that allow the close
integration of parametric geometric modeling and drafting
(CAD/CAE) software, fully automatic meshing capabilities,
product and material databases etc, the amount of time re-
quired for a simulation remains the only real barrier for

practical applications. Ideally, a detailed simulation ofa motor
and drive system should be based on a coupled field and circuit
model, as, for example, the one proposed by Mohammedet
al. [3]. Nevertheless, for many motor engineering problems
simplified FEA may be acceptable provided that significant
reduction is achieved in terms of computational resources.

For DC machines (with brushes), Demerdashet al. de-
scribed detailed, as well as simplified methods, for computing
the back emf and the inductances [4]. For induction motors,
Williamson et al. developed frequency domain models that
include only one rotor slot pitch and one stator phase belt
[5]. In this manner, the computational effort was substantially
reduced because the smallest possible region was employed
and the time variation of fundamental quantities was accounted
through a single FE solution in complex numbers.

The concepts from the present paper, which are introduced
with application to brushless (BL) permanent magnet (PM)
motors, can be extended on a more general basis to electron-
ically controlled synchronous machines. Unlike typical FEA
that employs hundreds of time-steps to solve the electromag-
netic diffusion equation, the new method only uses a minimum
number of magneto-static FE solutions of the Poisson equation
in conjunction with space-time transformations that exploit the
repetitive features of motor geometry and the periodicity of the
electromagnetic field.

For some machine topologies, as little as a single magneto-
static solution maybe required. In the studied examples, a
significant reduction in computational time was achieved while
maintaining satisfactory precision for performance estimation.
The steady-state analysis is performed in theabc reference
frame, therefore avoiding the known pitfalls ofdq theory.

II. ELECTROMAGNETIC FIELD ANALYSIS

The revolving magnetic field produced in the air-gap of a
BLPM machine by a rotor, which moves with the angular
electric speedω, can be expressed by a Fourier series

Bm(t, θ) =

∞
∑

ν=1

Bmν sin (νωt + νpθ) (1)

as a function of timet and space angular coordinateθ, where
p is the number of pole pairs.



Fig. 1. Finite Element (FE) model for one pole of an IPM motor with
a distributed winding. Only one open-circuit magneto-static field solution is
employed for the space-time transformations of Figs. 2–3.

Sinusoidal currents flowing in a 3-phase stator winding
produce in the air-gap an armature reaction revolving field

Ba(t, θ) =

∞
∑

ν=1

Baν ×

∑

f,b

3
∑

m=1

cos

[

ωt ± νpθ + γ0 ± (ν ∓ 1)(m − 1)
2π

3

]

(2)

where the plus sign corresponds to the forwardf moving
waves, the minus to the backwardb moving waves andγ0 is
the torque angle. In a balanced system, the resultant electric
fundamental is a forward moving wave. The amplitude of the
armature reaction waves

Baν =
3

π
µ0

wkoνkwν

kskcg0νp
Ipk (3)

is proportional with the total number of series turns per phase
w, the harmonic factors for slot openingkoν and windingkwν

and the peak value of the phase currentIpk. The amplitude is
inversely proportional with the saturation factorks, the Carter
factor kC and the air-gap lengthg0.

The previous equations are valid for the normal component
of flux density and do not include the slotting harmonics.
An additional simplification is introduced by neglecting the
higher order harmonics(ν > 1) of the armature reaction and
considering only its fundamental wave(ν = 1). The basis and
the implications of this assumption are further discussed in
another section. It should be noted that the harmonics of the
open-circuit field established by the PM rotor are still included
in the model. Based on (1) and (2), in this case the expression
of the air-gap field

Bg(t, θ) =

∞
∑

ν=1

[Bmν sin (νωt + νpθ)] +

Ba1 cos(ωt + pθ + γ0) (4)

as a function of timet at given angular coordinateθ is of the
same form with the expression of the function ofθ at givent,
provided that the two variables are linked by the space-time
linear transformation

pθ = ωt. (5)
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Fig. 2. Flux density in the center of the teeth for the motor ofFig. 1 operating
in open-circuit at 4,000rpm.

At steady-state, by further considering the magnetic flux
law together with the observation that in a typical electrical
machine the flux density in the teeth has a substantially radial
componentBr and in the yoke (back iron) a substantially
tangential componentBt, the field in the stator core will satisfy
the periodicity condition

Br,t(t, r, θ) = Br,t

(

t +
pkθs

ω
, r, θ + kθs

)

(6)

whereθs is the slot pitch measured in elec. deg. andk is a
positive integer.

For the rather small components of the tangential flux
density in the teeth and of the radial flux density in the yoke,
equation (6) is somewhat intuitively acceptable, under thepre-
viously introduced assumptions. For induction motor stators
it was shown through a detailed study based on numerical
analysis in the frequency domain that the complex magnetic
vector potentialA satisfies a periodicity condition on the edges
of a the phase-belt region [5]. Taking into account that

Br =
∂A

r∂θ
, Bt = −

∂A

∂r
(7)

the condition translates in periodicity for the flux density
components.

Based on the above rationale, the time function of the
magnetic field at any given point(r, θ) in the stator can be
”constructed” (estimated) based on the values of the field ata
given timet at points of the samer and integral increments
of the slot pitch, i.e.(r, θ + kθs). The procedure is explained
with reference to the example of Fig.1, in which the finite
element mesh in the stator has the same configuration for
every slot pitch. However, repetitive meshing is not an ab-
solute requirement, provided that space mapping/interpolation
techniques are employed.

For the magneto-static solution of Fig.1, the spatial dis-
tribution of the field along a radius that passes through the
middle of the teeth is shown in Fig. 2. The FEA was performed
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Fig. 3. Flux density in a mid-yoke point centrally located above the 6th slot
in the motor of Fig. 1 operating in open-circuit at 4,000rpm.

only on the smallest required domain of one pole (180 elec.
deg). Also shown is the time waveform for the radial flux
density in the center of the last tooth positioned within theslot
pitch number 6. This data was obtained from 360 time-stepped
solutions with a counter-clockwise (CCW) moving rotor. As a
general rule, if not specified otherwise, the angular coordinate
starts in the reference point – in this case the center of the
last tooth – and extends in the direction opposite to the rotor
movement.

Over half period, seven equidistant points of the time
waveform can be actually estimated based on the space-time
transformation using the values of the flux density in the center
of the five full teeth and two half teeth, which are included in
the computational domain. By employing the anti-periodicity
condition, a total of thirteen points are calculated over one
full period. The discrete flux density waveforms derived in
this manner can then be used for Fourier analysis. In the
example considered, based on a single magneto-static solution,
harmonics can be calculated up to and inclusive of the fifth
electrical order.

The same algorithm can be applied for any point within
the 6th slot pitch. Figure 3 illustrates the good agreement
between the time waveform of the flux density in the point
positioned in the radial center of yoke above the last tooth
and the corresponding space distribution from the magneto-
static solution of Fig.1. In the yoke not only the tangential
but also the radial flux density can be significant. In this case,
depending on the particular motor geometry and field pattern,
there maybe points exhibiting differences between the space
and time results.

The procedure is valid both for open-circuit and load
simulations (Figs. 4–6). The flux plot of Fig. 4 illustrates
through the pattern of flux lines, together with the colors of
the flux density plots, the substantially radial component of
the field in the teeth and the substantially radial componentin
the yoke.

Fig. 4. Rated load flux lines and color plots of (CCW from rightto
left): modulus, radial and tangential flux density, respectively. The field is
substantially radial in the teeth and substantially tangential in the yoke.
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Fig. 5. On-load flux density in the center of the teeth. The data for the
space-time transformation is provided by the single magneto-static FE solution
shown in Fig. 4.

III. M ACHINE PERFORMANCEESTIMATION

A. Core Losses

The harmonics of the waveforms calculated with the previ-
ously described procedure can be employed for the estimation
of stator core losses. For each harmonic, the peak value of the
flux density in any finite element is computed from the radial
and tangential components

Bν =
√

B2
rν + B2

tν (8)

The eddy current specific losses per unit of mass are given
by the equation

we =

νmax
∑

ν=1

keν (νf1, Bν) · (νf1)
2
· B2

ν (9)

and the hysteresis specific losses by

wh =

νmax
∑

ν=1

khν (νf1, Bν) · (νf1) · B
2

ν . (10)

The variation of the core loss coefficients with frequency
and peak resultant flux density was demonstrated in [6]. The
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Fig. 6. Flux density in a mid-yoke point centrally located above the 6th
slot in the load example of Fig. 4. Both the tangential and theradial field
components are plotted.
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Fig. 7. Open-circuit core losses for the example motor of Figs. 1–3.

Fourier harmonic analysis implies the superposition principle
under the assumption that the main contribution is due to the
fundamental frequencyf1.

The method was validated on a case study for the open-
circuit operation of the 184-frame 3-phase 6-pole IPM motor
prototype that served as an example for Figs. 1–6. The
computational results of Fig. 7 are systematically lower than
the test data, which is in line with expectations being giventhat
the effect of manufacturing, such as punching the laminations,
shrink fitting the core in the frame etc, is not included
in the mathematical model. Between the time stepping and
the harmonic simulation, the underestimation increases from
a maximum of approximately 10% to about 15%. Factors
contributing to the lower values calculated with (8)–(10)
include the limited number of harmonics and the absence of
a correction factor for the minor hysteresis loops.

TABLE I
THE VIRTUAL COIL SHIFTING PROCEDURE EXEMPLIFIED FOR A

SINGLE-LAYER FULLY PITCHED WINDING .

Rotor Virtual position of phase coils
position Slot number

[elec. deg.] 1 2 3 4 5 6
0 R R -B -B Y Y
30 R -B -B Y Y -R
60 -B -B Y Y -R -R
90 -B Y Y -R -R B
120 Y Y -R -R B B
150 Y -R -R B B -Y
180 -R -R B B -Y -Y

B. Back EMF

The tooth waveforms can also be used for the computation
of the flux linkage through virtual stator coils wound around
each tooth and of the per-phase back emf based, for example,
on the procedure presented in [1]. In the following, another
approach, which is inspired by Eastham [7], will be described
for calculating the back emf based on the magnetic vector
potential in the slots.

The procedure is introduced with reference to Table I. For
the simplicity of explanation, a single layer fully pitched
winding is employed instead of the double layer short-pitched
arrangement depicted in Fig.1. However, the concept can be
extended to any type of winding pattern. Only one magneto-
static FEA is performed with the rotor positioned under the
stator core as shown in Fig.1. Thisθ0 position is identified in
Table I as the 0 deg. position.

The flux linkage per unit of length through one turn of a coil
can be calculated as the difference between the average values
of the magnetic vector potentialA in the two slots where the
coil sides are placed, respectively. For example, for the yellow
(Y) phase a fully pitched coil placed in slot 6 returns in slot
12, which is not part of the FEA region. Taking into account
the per-pole anti-periodicity, the flux linkage through this coil
is equal to:

Φy,6−12(θ0) = wc (A6 − A12) ℓFe = 2A6wcℓFe (11)

wherewc is the number of turns in the coil andℓFe is the
effective stator core length. A similar calculation can be made
for the coil of the yellow phase that spans from slot 5 to
11. The result is then added to the one from (11) in order to
determine the flux linkage through the entire phase winding.

Instead of moving the rotor in the CCW direction and
performing additional FEA, the coils are virtually shiftedby
one slot in the opposite direction as shown in Table I. From
the calculation point of view, this is equivalent to a rotor
movement of exactly 30 elec. deg. For this second position in
the sequence, the flux linkage in the yellow phase is calculated
based on the average magnetic vector potential from slots 4
and 5. The procedure continues in one-slot increments untila
half electric cycle is covered.

Figure 8 includes magnetic vector potentialA waveforms
and further illustrates the virtual coil shift concept. The
discrete points that can be employed for a space-time transfor-
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Fig. 8. Waveforms of average magnetic vector potential in the 5th and 6th slot
and the space-time transformation data obtained with the virtual coil shifting
method of Table I.
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Fig. 9. Open-circuit back emf for the example IPM motor of Figs. 1-3.

mation for the coil side placed in slot number 6 are provided
by the average values ofA in the slots in the exact sequence 6,
5, 4, 3, 2, 1. For the coil side from the slot number 5 the exact
sequence of 5, 4, 3, 2, 1 is complemented at the end by the
value ofA from slot 6 taken with changed sign, due to the anti-
periodicity between adjacent poles. In Fig. 8, for the clarity of
the plot, the origin of the angular coordinate was selected to
be different for each spatial distribution and to correspond to
the placement of the coil side in the magneto-static FEA (see
the first line of Table 1).

The space-time transformation procedure can be employed
for any winding pattern, including the one shown in Fig. 1. In
the recommended procedure, in order to avoid the differentia-
tion errors, the back emf harmonics are individually calculated
from the flux linkage harmonics and then contributions added
to estimate the waveform. For the prototype IPM motor,
satisfactory agreement was achieved between measurements,
time-stepping FEA and the simplified space-time calculations,
which do not include the effect of the higher-order slotting
harmonics (Fig. 9).

Fig. 10. FE model for a 6-pole 9-slot IPM motor with concentrated coils
wound around each tooth. One pole pair is considered for simulating open-
circuit operation.

Fig. 11. Two additional FE solutions with the rotor positioned at 10 and 20
mech. deg. are employed for the space-time transformationsof Figs. 12–13.

C. Average Torque

The method previously described can be used in conjunc-
tion with other techniques for computing the electromagnetic
torque with minimal computational effort. The Maxwell stress
harmonic method introduced in [8], employs only magneto-
static field solution in order to compute the average torque
of a brushless PM motor operated from an ideally sine-wave
current regulated drive.

IV. EXTENSION OF THEMETHOD

The new method based on space-time transformations takes
full advantage of the repetitive geometry of stator cores with
identical slot pitches. For some machine topologies there sim-
ply may not be enough teeth to ensure satisfactory computation
based on a single magneto-static FE solution. In this case,
multiple solutions corresponding to different rotor positions
and load current distributions are employed following careful
planning in order to minimize the computational effort.

The design example of Figs.10-15 has the widely-used con-
figuration with three slots for each pole pair and concentrated
coils around each tooth. In this case, for the center tooth
position only four points for a space-time transformation can
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Fig. 12. Flux density in the center of the teeth for the 9-slot6-pole IPM
motor example operating in open-circuit at 4,000rpm.
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Fig. 13. Flux density in the yoke (centrally above slot) for the 9-slot 6-pole
IPM motor example operating in open-circuit at 4,000rpm.

be derived from the magneto-static solution of Fig. 10. From
such information only the fundamental wave can be computed.

At open-circuit operation, a minimum of two additional
simulations – with the rotor positioned at 10 and 20 mech.
deg., respectively (Fig. 11) – are required in order to estimate
up to inclusively the fifth electrical harmonic. The graph of
Fig. 12 includes the spatial distribution of the radial component
of flux density along a surface that passes through the middle
of the stator teeth. For the clarity of the plot, the field
distributions are shown only for the 0 and 20 deg. rotor
position. The angular coordinate is in the rotor reference
frame, measured CW from the left edge of the flux plot of
Figs. 10-11.

In terms of points to be used for a space-time transformation
on the graph of Fig. 12, the initial rotor position provides the
points located at 0, 120, 240 and 360 elec. deg. The 10 deg.
rotor position supplies the points for 30, 150 and 270 elec.

Fig. 14. Rated load flux lines and color plots of: modulus, radial and
tangential flux density, respectively (CCW from right to left). The field is
substantially radial in the teeth and substantially tangential in the yoke.

deg. The 20 deg. rotor position yields the values at 60, 180
and 300 elec. deg. Finally the remainder of the points shown
are calculated based on the previous data, using the center-pole
symmetry condition specific to open-circuit field distribution.
For example, the value of flux density for 330 elec. deg. is
equal to the one for 30 elec. deg. A similar procedure is
employed for the back iron, where for the design example
the flux density is substantially tangential (Fig. 13).

For load operation, when there is no field symmetry within
a pole, one magneto-static FE in the initial position of Fig.14
plus three other solutions of different rotor position and current
distribution are in principle required in order to equidistantly
cover one electrical cycle. The first solution provides four
data points to be used for space-time transformation, while
the other three solutions supply three points each.

The graph of Fig. 15 further illustrates the space-time
relationship for the example motor operating on-load. The
radial flux density in each tooth is identical in shape and the
waveforms of adjacent teeth are separated in space by 120
elec. deg. For the on-load tangential flux density waveform
in the back iron, it is interesting to note that the peak value
is only marginally higher than at open-circuit, while the top
of the curve is flat indicating the presence of higher order
harmonics.

V. D ISCUSSION OFASSUMPTIONS ANDRESULTS

In principle, the procedures described in the previous sec-
tions can be implemented using the programming or scripting
capabilities of commercially available electromagnetic FEA
software. The space-time transformations examples from this
paper were produced using the PC-FEA software [9].

The results of the new method show, within the scope
of an analysis limited to relatively low order harmonics,



-2

-1

0

1

2

0 1 2 3 4 5

0 90 180 270 360

Bt Y2
Bt Y1
Br T2
Br T1

Time [ms]

F
lu

x 
de

ns
ity

 [T
]

Angular coordinate [elec. deg.]

Fig. 15. Flux density in the center of two adjacent teeth and in the yoke
(centrally above slot) for the rated operation of the IPM motor of Fig. 14.

satisfactory agreement with more elaborate and substantially
more resource consuming time-stepping FE computations. For
open-circuit operation this is well in line with expectations,
being given that the main assumption involved in this case,
namely that the field is radial in the teeth and tangential in the
yoke, is typically valid in practical machine designs of regular
proportions. Furthermore, the yoke, which may contain both
radial and tangential flux components, is generally a lower
contributor in terms of both mmf drop and core losses in the
overall performance of a typical BLPM motor.

For the simulation of load operation, the new method
involves a more restrictive assumption, in that for the armature
reaction mmf only the fundamental is considered and the other
harmonics are neglected. Yet, in the magneto-static FEA that
supplies the data for the space-time transformation, the actual
stator winding pattern and currents are considered, instead of
an ideal sine-wave distribution. In principle, this may lead to
errors that should be carefully investigated for each particular
type of machine design. However, state of the art brushless
PM motors for sine-wave current regulated controllers are
purposely designed for low harmonic content and hence may
naturally fit to a satisfactory degree the assumptions of the
new method.

The example IPM of Fig.1 employs a 5/6 short-pitched
two-layer lap winding that greatly reduces the fifth and the
seventh stator mmf harmonics due to the very low values
of the corresponding winding factors (Table 2). Even if for
the other examples the harmonic winding factors may be
relatively higher, it should be kept in mind that the armature
flux density harmonics are also reduced by other elements,
including the harmonic order itself, as reflected in (3). The
armature harmonics are inversely proportional with the air-
gap length. Hence they are expected to be less significant in
surface mounted PM motors – which typically have a larger
equivalent air-gap – than in IPM motors, such as those studied
in the paper.

TABLE II
EXAMPLES OF ODD ORDER ELECTRIC HARMONIC WINDING FACTORS FOR

6-POLE 3-PHASE TOPOLOGIES.

Harmonic Winding type
factor Distributed – 36 slots Concentrated – 9 slots

Fully Short (5/6) Double Double layer
pitched pitched layer with skew

kw1 0.966 0.933 0.866 0.827
kw3 0.707 0.500 0.000 0.000
kw5 0.259 0.067 0.866 0.165
kw7 0.259 0.067 0.866 -0.118
kw9 0.707 0.500 0.000 0.000
kw11 0.966 0.933 0.866 -0.075
kw13 0.966 0.933 0.866 0.064
kw15 0.707 0.500 0.000 0.000
kw17 0.259 0.067 0.866 0.049
kw19 0.259 0.067 0.866 -0.044
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Fig. 16. Variation of the slot opening factor for the IPM motor examples.

The slot opening factor [10],

koν =
2

νβ0

sin
νβ0

2
, (12)

which is neglected in the conventional theory maybe particu-
larly effective in fractional slot designs. The integral 36-slot
6-pole IPM motor example has a relatively small slot opening
β0 with a value of 7.5 elec. deg. On the other hand, the 9-slot
6-pole IPM motor with concentrated windings of Fig. 10 has a
typical large opening of 22.5 elec. deg., which has a relatively
high impact even on the lower order harmonics as illustratedin
Fig. 16. As a separate note, for this motor configuration a stator
to rotor relative axial skew of half-slot drastically reduces the
effect of fifth and seventh harmonics on global parameters,
such as back emf and torque ripple.

In terms of flux density harmonics, the waveform in the
tooth of the concentrated winding IPM motor operating at
rated-load (Fig. 15) includes a fifth and a seventh order of
approximately 2.5% and 2% of the fundamental, respectively,
while the third harmonic is practically negligible. On the
other hand, in the yoke, under the same operating conditions,
the third saturation harmonic is substantial at 14.5% of the
fundamental, while the fifth is very small at 2% and the
seventh is practically zero.

The previous discussion provides hints on other possible



applications of the new space-time transformation method.
For example, the FE based technique could be employed
only to calculate the fundamental and possibly the third
order harmonic. In this case, the benefits would include the
minimization of the number of magneto-static FE solutions
and the filtering of the high-order mmf harmonics. The effect
of the higher order mmf and of the slotting (permeanace, zig-
zag) harmonics could be separately estimated, especially for
the tooth tip regions, through analytical means and added to
the FE space-time transformation results.

VI. CONCLUSION

The proposed method fills in a much needed gap in the
simulation tools available for brushless PM motor drives and is
of particular interest to initial machine sizing and optimization,
when computational speed is of the essence. Satisfactory
motor performance estimation is achieved with only a very
small number of magneto-static FE solutions and space-time
transformations specific to electrical machines.

For an IPM motor with a distributed winding and six teeth
per pole, a single magneto-static FE solution was employed in
order to calculate up to the fifth electric order the harmonics
of the steady-state magnetic field in the stator core. For
another IPM example with a concentrated around-the-tooth
winding and three teeth per pole pair, a minimum of three
magneto-static FE solutions were used to obtain similar style
results. In both cases, as well as for other anticipated design
configurations of practical interest, the computational time
is reduced by one or, possibly, two orders of magnitude as
compared with typical time-stepping FEA. The new method
includes the estimation of core losses and back emf and can
be effectively combined with procedures for minimum-effort
computation of electromagnetic torque.
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