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Abstract⎯Single-phase and two-phase induction machines are 
widely used in commercial applications due to their low cost and 
high reliability. The developed methods for the analysis of the 
single-phase induction motor, i.e. forward-backward field, 
symmetrical components and cross-field methods, can be adapted 
for modeling the MMF harmonics effect. This paper presents a 
unified approach on all these methods that demonstrates the 
equivalence between models and shows how the equivalent circuit 
elements can be interchanged from one method to another. Since 
half-cycle symmetry is a very common condition in the mass 
produced single-phase induction motors, this paper analyses only 
the odd MMF harmonic effects. Experimental results for three 
capacitor-run motors are used to validate all the proposed 
models. 

 
Index terms−single-phase induction motors, MMF harmonics, 
electromagnetic torque 

 
I. LIST OF SYMBOLS 

 
Vm, Va – complex voltages across main and auxiliary windings 
Vp,n,Zp,n – complex positive/negative sequence voltage and 
impedance 
Rs, Ra, Rm – stator winding resistance: equivalent/auxiliary/main  
Xls Xla, Xlm – stator leakage reactance: equivalent/auxiliary/main 
a, an – effective turns ratio (aux / main)  
Rrn – rotor resistance for n-th MMF harmonic 
Xlrn – rotor leakage reactance for n-th MMF harmonic 
Xmn – magnetization reactance for n-th MMF harmonic 
ZC – capacitive impedance connected in series with auxiliary winding 
P – poles number 
ωS, s – synchronous speed [rad/sec] and slip 
n – harmonics order 
 

II. INTRODUCTION 
 

Single-phase and two-phase induction machines are 
widely used in commercial applications due to their cost and 
high reliability. Significant performance deterioration of the 
systems driven by single or two-phase induction machines 
may appear due to winding harmonics that create parasitic 
torques at all speeds, typically causing “dips” in the 
torque/speed characteristic. Core and rotor copper losses are 
also increased due to the MMF harmonics effect and thus the 
motor efficiency is diminished. The study of harmonics effect 
in single-phase induction motors began about 40 years ago [6-
7]. Both odd and even harmonics effect have been considered 
using the double revolving field theory [1-2]. The other 
developed methods for the analysis of the single-phase 
induction motor, i.e. symmetrical components and cross-field 

methods, can be adapted for modeling the MMF harmonic 
effects. This paper presents a unified approach on these 
methods that demonstrates the equivalence between models 
and shows how the equivalent circuit elements can be 
interchanged from one method to another.  

The following assumptions are made: 
1. The stator windings are built with half-cycle symmetry – a 
common condition in the mass produced single-phase 
induction motors – and consequently only the odd MMF 
harmonics are considered. 
2. All the MMF harmonics experience the same level of 
saturation. 
3. The rotor current is treated as a current sheet that varies as a 
true harmonic function with respect to the position around the 
air-gap. 
4. The effect of skewing is ignored. However, including a 
skew leakage reactance in the equivalent circuit and reducing 
the magnetizing reactance accordingly can further consider 
this effect [14]. 

Fig. 1 shows a general equivalent circuit of the single-
phase induction motor connections. The starting impedance, 
ZC is detailed in its possible components. Experimental 
torque/speed curves were obtained for three capacitor-run 
motors, with various main and auxiliary winding distributions. 
Comparisons between the theoretical and experimental curves 
show reasonable agreement, with sufficient correlation to 
provide important guidance on the overall effect of the 
winding harmonics and the extent to which imperfections in 
the winding distribution are tolerable. The speed of calculation 
is important because of the large number of possible cases 
requiring analysis and interpretation, justifying the 
development of an analytical method in preference to a finite-
element approach that may be more time consuming.  

 
Fig. 1 Equivalent circuit of the single-phase induction motor connections 
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III. THEORY  
 
Forward and backward revolving field method 

 
The forward- and backward-revolving field method is 

generally attributed to Morrill [1]. The approach described 
here is essentially a summary of the lucid account given by 
Veinott [2], with the addition of the iron loss WFe that is 
represented in the equivalent circuit by Rc. The variables are 
expressed as phasors using complex numbers.  

Fig. 2 shows the revolving field method applied to a 
single-phase induction motor when capacitive impedance is in 
series with the auxiliary winding. Only the fundamental and 
the 3rd MMF harmonic are illustrated. For the analysis of 
winding harmonics, the permeance variation caused by the slot 
openings is neglected. The space harmonics are of odd order 
and rotate at subsynchronous speeds in both the forward and 
reverse directions. The impedances presented to the positive-
sequence (forward) and negative-sequence (backward) 
harmonic MMF distributions are approximated using the 
following relations: 
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The magnetization reactance and the rotor leakage 
reactance for the n-th harmonic order MMF may be 
approximated as a function of the reactances corresponding to 
the fundamental spatial MMF that includes the saturation 
effect: 
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The rotor resistance for higher harmonics is the same as for 

a motor with nP poles number. So, we can use the 
approximation: 
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Note that the bar resistance Rbar and the end-ring resistance 
Rendring are computed taking into account the skin-effect and 
the temperature effect [17]. 

The effective turns ratio that determines the n-th MMF 
harmonic interaction (forward and backward fields) is: 
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The harmonic field of order n = (4k − 1) will determine a 
rotation in the opposite sense with the fundamental flux wave, 
while the harmonic field of order n = (4k + 1) rotates in the 
same sense with the fundamental. The space MMF harmonics 
effect is more important at low speed and will diminish the 

starting torque. Note that the previously described equivalent 
circuits employ variable value parameters: magnetising 
reactances Xmn with the saturation level and rotor resistance 
with the skin-depth penetration level. The harmonics 
inductances are determined from the fundamental values using 
(3-4). 

The resultant torque is computed as: 
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where the torque produced by the fundamental field is given 
by: 
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The following relations give the torque produced by the 
n-th harmonic field: 
n = 4k + 1 
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Fig. 2 Equivalent circuit of 1-phase induction motor with capacitor connection 
using the forward and backward field theory. 
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n = 4k – 1 
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Eqs. (8) and (9) show that the main winding distribution is the 
main source of the harmonic torque, i.e.:  

a) a very low winding factor for the n-th harmonic of the 
main winding eliminates the corresponding harmonic torque 
regardless of the auxiliary space distribution;  

b) a very low winding factor for the n-th harmonic of the 
auxiliary winding does not eliminate the corresponding 
harmonic torque if the main winding has a significant n-th 
harmonic winding factor. 

For higher order harmonics, the torque must be multiplied 
by the order of the harmonic. The n-th harmonic field 
produces a torque similar to a motor with n times the number 
of poles of the fundamental field. Usually, the auxiliary 
winding is displaced 90 electrical degrees from the main 
winding of the fundamental. This displacement is n times 90 
electrical degrees for the n-th harmonic. 
 
Symmetrical components method 

 
Fig. 3 shows the symmetrical-component model where 

only the fundamental and the 3rd MMF harmonic are 
illustrated. The model for the fundamental MMF was 
originally described by Veinott,[2] and Suhr,[3].  

By association with the forward-backward field method, 
the positive sequence corresponds to the forward rotating field 
and the negative sequence to the backward rotating field. 

When the original revolving-field and symmetrical-
component theories were first developed, practical 
computation of the results was a laborious manual process. 
With fixed values for the iron-loss resistors, the currents can 
be calculated explicitly, and in this case the computational 
burden is not greatly increased by including them; but there 
remains the problem of knowing what values to use.  

The approach described here relies on two elements not 
available to the original authors: one is the extremely fast 
solution by computer, and the other is the ability to estimate 
the iron loss independently from the flux-density waveforms 
(which themselves can now be computed numerically). Indeed 
it is possible to re-evaluate the iron loss recursively from the 
flux-density waveforms as the solution proceeds, causing Rcf 
and Rcb to vary. It is true that the resistors Rcf and Rcb represent 
the iron loss in the electrical equivalent circuit and improve 
the calculation of input power and power factor. However, in 
the split-phase induction motor there are so many other 
departures from the ideal model, that this enhancement may 
make little difference to the overall accuracy. 

For example, stray loss, inter-bar currents, winding 
harmonics, and various manufacturing imperfections may 
have a combined effect that is greater than the iron loss, which 
is often relatively small in these motors. The values of the 
resistors Rcf and Rcb cannot be measured directly, but only 
roughly correlated with a series of calculations over a range of 
operating conditions.  

 

 
Fig.3 Equivalent circuit of 1-phase induction motor with capacitor connection 
using the symmetrical components theory. 

 
For this reason it is an advantage to have more than one 

analytical model, and in the next section a third method is 
described — the cross-field model — which includes the iron-
loss resistors corresponding to the main and auxiliary winding 
circuits. 

The impedances presented to the positive-sequence and 
negative-sequence harmonic MMF distributions are 
approximated using the following relations: 
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The magnetization reactance and the rotor leakage reactance 
for the n-th harmonic order MMF may be approximated with 
similar relations to forward and backward field method (3-4).  

The coefficient αn is computed as: 
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The coefficient αn is introduced to take into account the fact 
that n-th MMF harmonic interaction (positive and negative 
sequence fields) has different effective turns ratio which is an 
(6). The transformation from the circuit in Fig. 2 (physical 
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rotating fields) and the circuit from Fig. 3 (fictitious 
symmetrical components fields) can be done if the forward 
and backward impedances from the auxiliary winding are 
expressed using the same effective turns ratio a. Thus, it 
would seem necessary to multiply the n-th harmonic 
impedances with the ratio (an/a)2. On the other hand this 
multiplication would change the harmonic impedance value 
that is used in the main winding circuit. A possible solution is 
to use an averaging factor αn, which will apply to both forward 
and backward components of the n-th space harmonic 
impedance. A comparison between equivalent circuits in Figs. 
2 and 3 shows that if a = an then the rotating forward  and 
backward fields method and symmetrical components method 
will predict identical results as αn = 1 for this particular case. 
If kwn or kwnaux are smaller than 0.02, it is practic to set αn = 0. 

The resultant torque is computed as: 
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where the relations give the torque produced by the n-th 
harmonic field: 
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Note the sign change when including different n-th 
harmonics order. The harmonics 3, 7, 11, 4k – 1, determine a 
reversed rotation sense as compared to the fundamental field, 
while harmonics 5, 9, 12, 4k + 1 determine the same rotation 
sense with the fundamental field. 

 
Cross-field method 
 

Fig. 4 shows the cross-field model where only the 
fundamental and the 3rd MMF harmonic are illustrated. The 
model for the fundamental MMF was originally described by 
Puchstein and Lloyd [4], and Trickey [5]. It assumes a 
stationary reference frame fixed to the stator and modern 
theory describes this method as two-axis or dq axis models 
[12, 15, 16]. This method has a better physical correlation with 
the actual motor. The main and auxiliary winding circuits are 
uncoupled and modeled individually, interacting with the 
entire rotor MMF harmonics. Each phase contribution to the 
torque production may be easily identified.  

The magnetization reactance and the rotor leakage 
reactance for the n-th harmonic order MMF may be 
approximated with similar relations to forward and backward 
field method (3-4). The equivalent iron-loss resistances, rCm 
and rCa are modelled as in [18] with the assumption: 

2
Ca Cmr a r=                                                                       (16) 

The per unit speed term that appears in the induced EMFs 
for the n-th MMF harmonic circuit is: 
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The resultant torque is computed as: 
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Fig. 4 Equivalent circuit of 1-phase induction motor with capacitor 

connection using the cross-field theory. 
 

 
where the torque produced by the fundamental field is: 
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while the torque produced by the n-th harmonic field is given 
by: 
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where an is computed with (5) and Icm, Ica represent the 
currents associated with the core loss in the main winding and 
auxiliary winding respectively. 

Note the sign change when including different n-th 
harmonics order. The harmonics 3, 7, 11, 4k – 1, determine a 
reversed rotation sense as compared to the fundamental field, 
while harmonics 5, 9, 12, 4k + 1 determine the same rotation 
sense with the fundamental field. 

The circuit equations representing Fig. 4 may be expressed 
as a matrix system [15] and thus any harmonic circuit may be 
easily included. The core-loss variation with the current level 
is addressed by an initial calculation of the total core losses 
from an estimate of the flux-density waveforms, extract the 
values of the corresponding EMFs, E1m, E1a and use a 
recursive method until rCm and rCa converge to a steady-state 
value. 

The cross-field and forward-backward field methods will 
produce identical results if the core losses are neglected. 
However, as the experiments from the next section showed, 
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the difference introduced in the computed results between the 
forward-backward fields and the cross-field methods is not 
significant.  

This result is in line with the idea that various locations of 
the equivalent core-loss resistance in the equivalent circuit do 
not change the prediction of the overall motor performance. 
The symmetrical components method is employing an average 
of the n-th harmonic impedance in the stator windings circuit, 
and thus will predict identical results with the other two 
methods only for the case when the stator windings have the 
same distribution or when the MMF harmonics of the main 
winding may be neglected. 
 

IV. COMPARISON WITH EXPERIMENTAL DATA 
 

All the previously described methods are validated on 
three capacitor-run motors with parameters detailed in Annex.  

In Table I the winding factors up to the 7th space harmonic 
are presented, where kwn main and kwn aux stand for main and 
auxiliary windings harmonics factors. The equivalent circuit 
elements from Figs. 2-4 are estimated using analytical and 
numerical methods [19-20]. 

Figs. 5, 9, 13 show the experimental and computed torque 
vs speed results when both stator windings are energized, 
using all three methods for motor 1, motor 2 and motor 3, 
respectively.  

Figs. 6, 10, 14 show the experimental and computed torque 
vs speed results when only main winding is energized, using 
all three methods for motor 1, motor 2 and motor 3, 
respectively. 

Figs. 7, 11, 15 show the experimental and computed line 
current vs speed results using all three methods for motor 1, 
motor 2 and motor 3, respectively.  

Figs. 8, 12, 16 show the experimental and computed 
efficiency vs speed results using all three methods for motor 1, 
motor 2 and motor 3, respectively. 

One should note for motor 1, that while the forward-
backward field and the cross-field methods predict almost 
similar results in very good agreement with the test data, the 
symmetrical component method underestimates the torque 
values between starting and break-down points. The 
measurements and computations performed for the case when 
just the main winding is energized (Fig. 6), show that the 
symmetrical components method overestimates the 3rd 
harmonic effect. Essentially this is due to the averaging factor 
αn from (12). This factor would allow a correct model for the 
space harmonics effect only if the stator windings have a 
similar distribution or if the main winding has a low 
harmonics content. For rated load points, all methods lead to 
results that give good agreement with test data. 

Motor 2 is an example where the main winding has a very 
low 3rd harmonic content while the auxiliary winding contains 
very high 3rd, 5th and 7th MMF harmonics.  

Two main observations are valid for this case:  
a) a 3rd strong harmonic in the auxiliary winding is 

practically not observable in the torque vs speed curve shape 
as long as the 3rd harmonic from the main winding is very low; 

b) even if the stator windings do not have an identical 
distribution, i.e. identical winding factors, the symmetrical 
component method predicts similar results with the other two  

TABLE I 
 
WINDING FACTORS FOR THE TESTED MOTORS 

Winding factor Motor1 Motor2 Motor3 

kw1main 0.8815 0.831 0.9029 

kw3main 0.1944 0.0098 0.3080 

kw5main 0.2540 0.1721 0.1936 

kw7main 0.0442 0.1321 0.1485 

kw1aux 0.9262 0.9577 0.9029 

kw3aux 0.4385 0.6533 0.3080 

kw5aux 0.1021 0.2053 0.1936 

kw7aux 0.2544 0.1576 0.1485 
 
methods if the values for the main and auxiliary winding 
factors are not significantly different. Practically, a harmonic 
winding factors ratio (kwn / kwnaux) in the range 0.8 ... 1.2 is 
considered to lead to similar results for all three computation 
methods. As mentioned in Section III, in connection with the 
forward-backward field method, a very low winding factor for 
the n-th harmonic of the main winding eliminates the 
corresponding harmonic torque regardless of the auxiliary 
space distribution. This is an important feature that allows the 
implementation of an auxiliary winding that maximises the 
starting capabilities and allows a uniform slot fill factor.  

All three computation methods lead to similar results in 
good agreement with test data. Note that the different 
implementations of the core loss equivalent resistance do not 
influence significantly the overall results. 

 

 
Fig. 5. Experimental and computed torque vs. speed for Motor 1 – energized 
both stator windings (see Table I). 

 
Fig. 6. Experimental and computed torque vs. speed for Motor 1 – energized 
main winding only (see Table I). 
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Fig. 7 Experimental and computed current vs. speed for Motor 1– energized 
both stator windings (see Table I). 

 
Fig. 8 Experimental and computed efficiency vs. speed for Motor 1 – 
energized both stator windings (see Table I). 

 
Fig. 9. Experimental and computed torque vs. speed for Motor 2 – energized 
both stator windings (see Table I). 

 
Fig. 10. Experimental and computed torque vs. speed for Motor 2 – energized 
main winding only (see Table I). 
 

 
Fig. 11 Experimental and computed current vs. speed for Motor 2 – energized 
both stator windings (see Table I). 
 

 
Fig. 12 Experimental and computed efficiency vs. speed for Motor 2 – 

energized both stator windings (see Table I). 

 
Fig. 13. Experimental and computed torque vs. speed for Motor 3 – energized 
both stator windings (see Table I). 

 
Fig. 14. Experimental and computed torque vs. speed for Motor 3 – energized 
main winding only (see Table I). 
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Fig. 15. Experimental and computed current vs. speed for Motor 3 – energized 
both stator windings (see Table I). 

 
Fig. 16. Experimental and computed efficiency vs. speed for Motor 3 – 
energized both stator windings (see Table I). 

 
Motor 3 is an example where the main and auxiliary windings 
have an identical space distribution. For such cases, virtually 
any computation method may be selected for a good 
correlation with the test data. The differences between test 
data and computation that still occur can be explained by the 
uncertainties in the materials (steel, rotor cage alloy) 
properties. 

 
V. CONCLUSIONS 

 
The effects of MMF harmonics can be analytically 

modeled in single-phase induction motors using any of the 
three classical methods. The equivalence of the methods is 
demonstrated in this paper. The forward-backward field and 
cross field methods may be used for any stator winding 
distribution and configuration, while the symmetrical 
components method should be avoided for the cases when 
both windings have an important but different space 
harmonics content. The core-loss modelling by the placement 
of equivalent resistances in various locations within the 
equivalent circuits has a minor effect on the accurate 
prediction of the overall motor performance. 
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ANNEX 
 

MOTORS PARAMETERS 
1-phase capacitor-run induction motors: 
 
Motor   # 1 #2 #3 
Voltage [V] 220 220 220 
Frequency [Hz] 60 50 60 
Poles 4 2 2 
Capacitor [μF] 40 25 35 
Rated power [W] 1100 1000 1875 
Rated current [A] 7.1 6.3 11.75 
Turn ratio a 1.097 0.955 1.48 
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